

In collaborazione con ARSIA e Laboratorio congiunto Università Impresa GEMMA VERDE

Verde urbano e sostenibilità

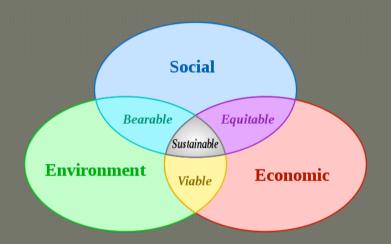
Maggio 2010

Giovedì 27 Firenze Limonaia di Villa Strozzi - Via Pisana, 77

Venerdì 28 Firenze Fortezza da Basso – Manifestazione Terra Futura Padiglione Spadolini

Con il contributo:

Valutare la sostenibilità


Applicazione ai parchi pubblici

Paolo Spugnoli Riccardo Dainelli Ciro Degl'Innocenti

Sostenibilità e ambiente

"Lo sviluppo sostenibile è uno sviluppo che soddisfa i bisogni del presente senza compromettere la possibilità delle generazioni future di soddisfare i propri bisogni."

(Rapporto Brundtland del 1987)

Il tasso di utilizzazione delle risorse rinnovabili non deve essere superiore al loro tasso di rigenerazione;

l'immissione di sostanze inquinanti e di scorie nell'ambiente non deve superare la capacità di carico dell'ambiente stesso;

lo stock di risorse non rinnovabili deve restare costante nel tempo.

La sostenibilità è un concetto guida

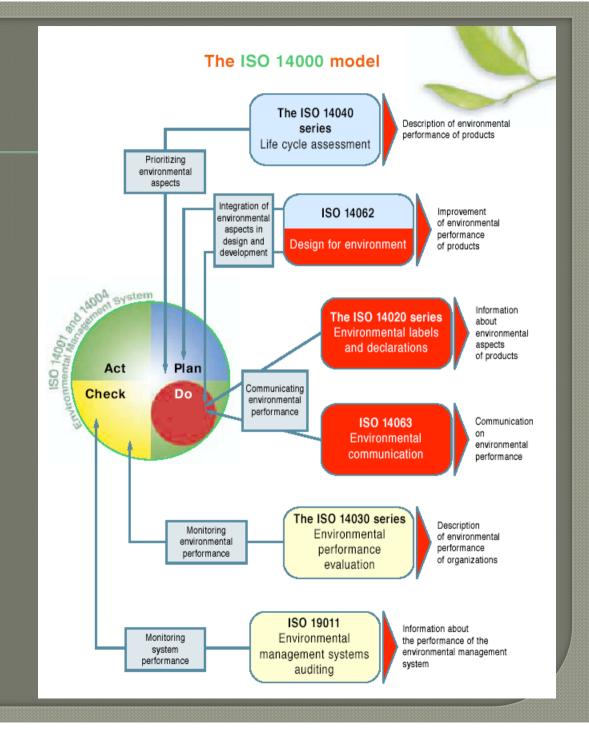
Secondo molti ambientalisti l'idea di sviluppo sostenibile è una contraddizione in quanto lo sviluppo implica necessariamente una degradazione ambientale.

La sostenibilità è un concetto guida analogo a quelli di libertà e giustizia e quindi è un valore da rispettare e un obiettivo da perseguire.

Su un piano pratico, per dare sostanza a questo concetto occorre disporre di uno strumento che consenta di valutare se un'azione intrapresa ci avvicina o ci allontana, e possibilmente in quale misura, dalla sostenibilità.

LCA: Life Cycle Assessment

- LCA è una metodologia per <u>valutare l'impatto ambientale</u> associato a un prodotto lungo l'intero arco della sua vita, (*Cradle to grave*; well to wheel or tank) e fornire quindi una misura della sua sostenibilità ambientale.
- L'importanza della metodica LCA è sostanzialmente il riflesso dell'importanza attribuita alla sostenibilità ambientale di un processo, divenuta criterio imprescindibile di valutazione della sua qualità, fattibilità e accettabilità.


Impatti

Parameter	Description	Measure
ERD	Energy Resources Depletion	MJ
GWP	Global Warming Potential	kg CO ₂
ACID	Acidification Potential	kg SO ₂
EUTRO	Eutrophication Potential	kg Phosphate
OXFOT	Photo-chemical Oxidant Formation	kg Ethylene
НТР	Human Toxicity Potential	Kg Pb
ЕТР	Ecotoxicity Potential	kg Zn

Global Warming Potential

- È il risultato delle emissioni di gas serra: anidride carbonica, metano e protossido di azoto.
- International Panel on Climate Change (IPCC).

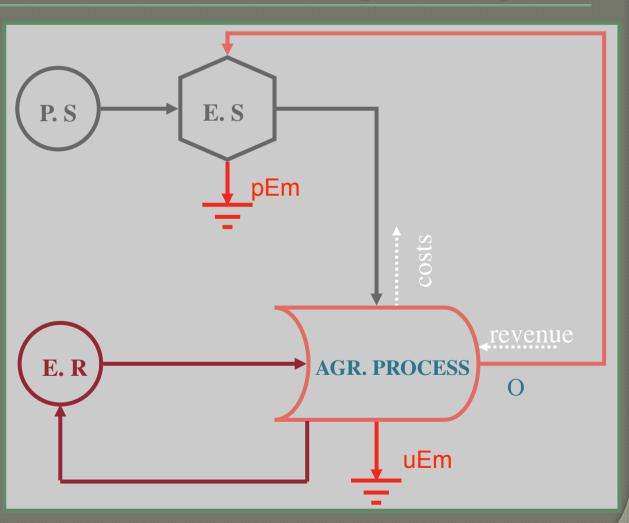
Data la diffusione applicativa della LCA, l'ISO (International Society for Standardization) ha emesso una serie di norme volte a definirne gli aspetti metodologici (ISO14040).

Fasi LCA

- Definizione degli scopi.
- Definizione del sistema.
- •Inventario dei flussi.
- Computo degli impatti.
- Analisi dei risultati.

Scopi

- Fornire informazioni sulle prestazioni ambientali di un prodotto in relazione ad altri simili.
- Valutare i vantaggi (ambientali) conseguibili con un'innovazione di processo.
- Verificare il rispetto di prestabiliti limiti di impatto (incentivi, tasse).
- Certificare la sostenibilità di un prodotto (etichetta ambientale) o di un sistema.
- Analizzare possibili scenari per individuare strategie politiche (tipo e priorità di interventi) volte a eliminare o ridurre un problema ambientale (si pensi per esempio alle iniziative politiche per ridurre l'effetto serra).


Unità funzionale

 Identificazione il più possibile esatta del prodotto analizzato in relazione alla sua funzione.

Si tratta in generale di scegliere una quantità unitaria, per esempio un chilo di pane, una tazzina di caffè, una tonnellata di granella di girasole, un MJ di biodiesel e simili, ma anche più complesse come per esempio il "trasporto tramite autovettura di una persona per 1 km".

Inventory analysis

Consiste nell'elencare e quantificare i flussi di materiali, energia ed emissioni che entrano ed escono dal sistema in studio in un prestabilito periodo di tempo, suddivisi in flussi economici e in flussi ambientali.

Effetti ambientali e input economici

Input categories	Inputs	Unit	Energy MJ/unit	CO ₂ eq kg/unit
	Nitrogen from residues	kg	-	4.65
Simple nitrogen fertilizers	Urea (46-0-0)	kg	31.62	1.33
	Ammonium nitrate (26-0-0)	kg	12.75	1.59
Complex fertilizers	N-P fertilizer (11-25-0)	kg	8.36	0.49
Complex fermizers	Diammonium phosphate (18-46-0)	kg	15.26	1.72
Pesticides	Global (oxifluorfen 22%)*	1 c. p.	75.57	3.41
1 esticides	Goal (oxifluorfen 41%)*	1 c. p.	140.83	6.35
Seeds Sunflower seed		kg	6.93	0.50
Fuels	Agricultural diesel	kg	46.87	3.60
Labor	Unskilled worker	h	7.30	-

Emissioni GHG per la produzione di fertillizzanti azotati

da 3.0 a 9.6 kg CO_2 eq (kg N)⁻¹.

Inventario dei flussi

Allocazione

- Nel caso il prodotto non sia unico ma si abbiano due o più coprodotti si tratta di definire un criterio per suddividere gli impatti ambientali fra i coprodotti.
- Metodo di sostituzione. Si basa sulla valutazione degli impatti evitati. Si tratta di identificare un prodotto che può essere sostituito dal coprodotto del sistema e gli impatti evitati come conseguenza.
- Metodo di ripartizione proporzionale.
 In relazione alla massa o al contenuto energetico o al prezzo dei coprodotti.

Parchi e giardini

Quale unità funzionale?

Quali impatti?

Quali input?

Coprodotti o rifiuti?

Unità funzionale

Un ettaro di parco.

Manutenzione annuale di:

- un ettaro di parco;
- un ettaro di prato;
- un certo numero di alberi;
- ■10 m³ di siepi;
- ■100m² di sentieri e vialetti.

Impatti

Energia primaria

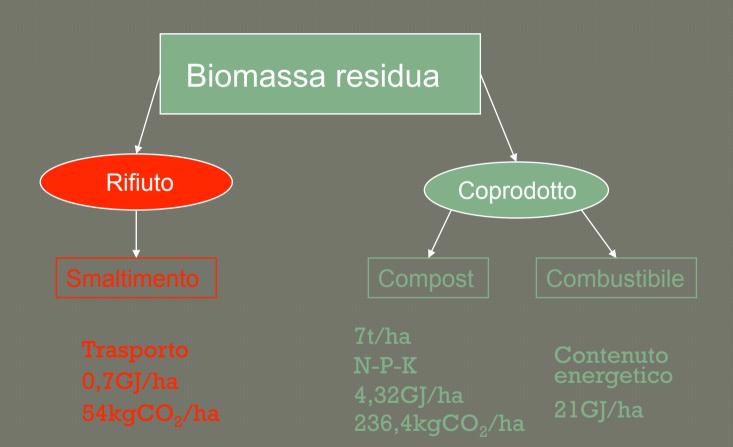
GWP

H₂O

Input

Input economici

- Gestione tecnica amministrativa.
- Macchine.


Input ambientali (risorse)

- Suolo
- Acqua.
- Superficie.

Risultati

Operazione	Costo energetico	Global warming	Consumi idrici
	GJ/ha	kg CO ₂ eq/ha	m³/ha
Taglio prati	10	760	
Irrigazione	7	400	6500
Concimazione (prati+piante)	10	1222	
Diserbo vialetti	9 x 10 ⁻³	0,6	
Totale	27	2382,6	6500

Coprodotti e rifiuti

Conclusioni

- Taglio dell'erba, irrigazione e concimazione sono interventi a elevato impatto ambientale da controllare per migliorare la sostenibilità.
- La valorizzazione della biomassa residua contribuisce a ridurre gli impatti.
- Gli effetti positivi del verde urbano sull'ambiente cittadino sono molteplici anche se difficilmente quantificabili e certamente superiori agli impatti che si producono per il suo mantenimento. La valutazione di impatto ambientale va quindi considerata in un'ottica di miglioramento delle prestazioni ambientali di una comunità che ha tra i propri valori guida la sostenibilità.